Les OR-Notes sont une série de notes d'introduction sur des sujets qui relèvent de la vaste rubrique du domaine de recherche opérationnelle (OR). Ils ont été utilisés à l'origine par moi dans un cours d'introduction OU je donne à l'Imperial College. Ils sont maintenant disponibles pour l'utilisation par tous les étudiants et enseignants intéressés dans OR sous réserve des conditions suivantes. Vous trouverez une liste complète des sujets disponibles dans OR-Notes ici. Exemples de prévision Exemple de prévision Examen UG 1996 La demande pour un produit au cours des cinq derniers mois est présentée ci-dessous. Utiliser une moyenne mobile de deux mois pour générer une prévision de la demande au mois 6. Appliquer le lissage exponentiel avec une constante de lissage de 0,9 pour générer une prévision de la demande de la demande au mois 6. Quelle de ces deux prévisions préférez-vous et pourquoi? La moyenne pour les mois deux à cinq est donnée par: La prévision pour le sixième mois est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile pour le mois 5 m 5 2350. En appliquant le lissage exponentiel avec une constante de lissage de 0,9 nous obtenons: La prévision pour le sixième mois est juste la moyenne pour le mois 5 M 5 2386 Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si on le fait, on constate que pour la moyenne mobile MSD (15 - 19) sup2 (18-23) sup2 (21-24) sup2 / 3 16.67 et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,9 MSD (13-17) ) Sup2 (22.58 - 24) sup2 / 4 10.44 Dans l'ensemble, nous voyons que le lissage exponentiel semble donner les meilleures prévisions à un mois d'avance, car il a une MSD plus faible. Nous préférons donc la prévision de 2386 qui a été produite par lissage exponentiel. Exemple de prévision 1994 UG examen Le tableau ci-dessous montre la demande pour un nouvel après-rasage dans un magasin pour chacun des 7 derniers mois. Calculer une moyenne mobile de deux mois pour les mois deux à sept. Quelle serait votre prévision pour la demande au mois huit Appliquer lissage exponentiel avec une constante de lissage de 0,1 pour obtenir une prévision de la demande au mois huit. Laquelle des deux prévisions pour le mois huit préférez-vous et pourquoi Le magasinier croit que les clients se tournent vers ce nouvel après-rasage d'autres marques. Discutez de la façon dont vous pourriez modeler ce comportement de commutation et indiquer les données dont vous auriez besoin pour confirmer si cette commutation se produit ou non. La moyenne mobile de deux mois pour les mois deux à sept est donnée par: La prévision pour le mois huit est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile pour le mois 7 m 7 46. Appliquant lissage exponentiel avec une constante de lissage de 0,1 nous Get: Comme avant la prévision pour le mois huit est juste la moyenne pour le mois 7 M 7 31,11 31 (car nous ne pouvons pas avoir la demande fractionnée). Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si nous le faisons, nous constatons que pour la moyenne mobile et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,1 Ensuite, nous voyons que la moyenne mobile de deux mois semble donner les meilleures prévisions d'un mois à venir, car il a une MSD plus faible. Nous préférons donc la prévision de 46 qui a été produite par la moyenne mobile de deux mois. Pour examiner la commutation nous devrions utiliser un modèle de processus de Markov, où les marques d'états et nous aurions besoin d'information d'état initiale et de probabilités de commutation de client (des enquêtes). Nous aurions besoin d'exécuter le modèle sur les données historiques pour voir si nous avons un ajustement entre le modèle et le comportement historique. Exemple de prévision 1992 Examen UG Le tableau ci-dessous montre la demande pour une marque particulière de rasoir dans un magasin pour chacun des neuf derniers mois. Calculer une moyenne mobile de trois mois pour les trois à neuf mois. Quelle serait votre prévision pour la demande dans le mois dix Appliquer lissage exponentiel avec une constante de lissage de 0,3 pour dériver une prévision de la demande au mois dix. Quelle est la moyenne mobile pour les mois 3 à 9 donnée par: La prévision pour le mois 10 est juste la moyenne mobile pour le mois précédant ce qui est la moyenne mobile pour le mois 9 m 9 20,33. Si l'on applique un lissage exponentiel avec une constante de lissage de 0,3 on obtient: Comme précédemment, la prévision pour le mois 10 est juste la moyenne pour le mois 9 M 9 18,57 19 (comme nous le pouvons) Ne peut pas avoir de demande fractionnée). Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si nous le faisons, nous constatons que pour la moyenne mobile et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,3 Ensuite, nous voyons que la moyenne mobile de trois mois semble donner les meilleures prévisions d'un mois à venir, car il a une MSD plus faible. Nous préférons donc la prévision de 20 qui a été produite par la moyenne mobile de trois mois. Exemple de prévision 1991 UG examen Le tableau ci-dessous montre la demande pour une marque particulière de télécopieur dans un grand magasin au cours des douze derniers mois. Calculer la moyenne mobile de quatre mois pour les mois 4 à 12. Quelle serait votre prévision pour la demande au mois 13 Appliquer lissage exponentiel avec une constante de lissage de 0,2 pour dériver une prévision de la demande dans le mois 13. Quelles sont les deux prévisions pour le mois 13 La moyenne mobile sur quatre mois pour les mois 4 à 12 est donnée par: m 4 (23 19 15 12) / 4 17,25 m 5 (27 23 19 15) / 4 21 m 6 (30 27 23 19) / 4 24,75 m 7 (32 30 27 23) / 4 28 m 8 (33 32 30 27) / 4 30,5 m 9 (37 4 33 m 10 (41 37 33 32) / 4 35,75 m 11 (49 41 37 33) / 4 40 m 12 (58 49 41 37) / 4 46,25 La prévision pour le mois 13 est juste la moyenne mobile Pour le mois précédent ce qui est la moyenne mobile pour le mois 12 m 12 46,25. Si l'on applique un lissage exponentiel avec une constante de lissage de 0,2, on obtient: Comme précédemment, la prévision pour le mois 13 est juste la moyenne pour le mois 12 M 12 38,618 39 (comme nous le pouvons) Ne peut pas avoir de demande fractionnée). Pour comparer les deux prévisions, nous calculons l'écart quadratique moyen (MSD). Si nous faisons cela, nous constatons que pour la moyenne mobile et pour la moyenne exponentiellement lissée avec une constante de lissage de 0,2 Ensuite, nous voyons que la moyenne mobile de quatre mois semble donner les meilleures prévisions d'un mois à venir, car il a une MSD plus faible. Nous préférons donc la prévision de 46 qui a été produite par la moyenne mobile de quatre mois. La demande saisonnière des changements de prix de la publicité, à la fois cette marque et d'autres marques situation économique générale nouvelle technologie Exemple de prévision 1989 UG examen Le tableau ci-dessous montre la demande pour une marque particulière de four à micro-ondes dans un grand magasin au cours des douze derniers mois. Calculer une moyenne mobile de six mois pour chaque mois. Quelle serait votre prévision pour la demande au mois 13 Appliquer le lissage exponentiel avec une constante de lissage de 0,7 pour dériver une prévision de la demande dans le mois 13. Quelles sont les deux prévisions pour le mois 13 préférez-vous et pourquoi Maintenant, nous ne pouvons pas calculer un six Mois jusqu'à ce que nous ayons au moins 6 observations - c'est-à-dire que nous pouvons seulement calculer une telle moyenne à partir du mois 6 en avant. Nous avons donc: m 6 (34 32 30 29 31 27) / 6 30,50 m 7 (36 34 32 30 29 31) / 6 32,00 m 8 (35 36 34 32 30 29) / 6 32,67 m 9 (37 35 36 34 32 30) / 6 34,00 m 10 (39 37 35 36 34 32) / 6 35,50 m 11 (40 39 37 35 36 34) / 6 36,83 m 12 (42 40 39 37 35 36) / 6 38,17 Les prévisions pour le mois 13 Est juste la moyenne mobile pour le mois précédent ce qui est la moyenne mobile pour le mois 12 m 12 38,17. Par conséquent, comme nous ne pouvons pas avoir de demande fractionnée, la prévision pour le mois 13 est de 38. En appliquant le lissage exponentiel avec une constante de lissage de 0,7, nous obtenons: Les 7 pièges des moyennes mobiles Une moyenne mobile est le prix moyen d'un titre sur une période spécifiée de temps. Les analystes utilisent fréquemment les moyennes mobiles comme outil analytique pour faciliter le suivi des tendances du marché, à mesure que les titres se déplacent de haut en bas. Les moyennes mobiles peuvent établir des tendances et mesurer l'élan. Par conséquent, ils peuvent être utilisés pour indiquer quand un investisseur doit acheter ou vendre un titre spécifique. Les investisseurs peuvent également utiliser des moyennes mobiles pour identifier des points de soutien ou de résistance afin de mesurer quand les prix sont susceptibles de changer de direction. En étudiant les gammes historiques de négociation, des points de soutien et de résistance sont établis lorsque le prix d'un titre a inversé sa tendance à la hausse ou à la baisse, par le passé. Ces points sont ensuite utilisés pour faire, acheter ou vendre des décisions. Malheureusement, les moyennes mobiles ne sont pas des outils parfaits pour établir des tendances et présentent de nombreux risques subtils mais importants pour les investisseurs. En outre, les moyennes mobiles ne s'appliquent pas à tous les types d'entreprises et d'industries. Voici quelques-uns des principaux inconvénients des moyennes mobiles: 1. Les moyennes mobiles tirent les tendances des informations passées. Ils ne tiennent pas compte des changements qui peuvent affecter les performances futures des titres, comme les nouveaux concurrents, la demande plus ou moins forte de produits dans l'industrie et les changements dans la structure de gestion de l'entreprise. 2. Idéalement, une moyenne mobile montrera un changement constant dans le prix d'un titre, au fil du temps. Malheureusement, les moyennes mobiles ne fonctionnent pas pour toutes les entreprises, en particulier pour ceux dans les industries très volatiles ou ceux qui sont fortement influencés par les événements actuels. Cela est particulièrement vrai pour l'industrie pétrolière et les industries hautement spéculatives, en général. 3. Moyennes mobiles peuvent être étalées sur toute période de temps. Cependant, cela peut être problématique car la tendance générale peut changer considérablement selon la période de temps utilisée. Les délais plus courts ont plus de volatilité, alors que les délais plus longs ont moins de volatilité, mais ne tiennent pas compte des nouveaux changements sur le marché. Les investisseurs doivent être prudents dans le temps qu'ils choisissent, afin de s'assurer que la tendance est claire et pertinente. 4. Un débat en cours est de savoir s'il convient ou non de mettre davantage l'accent sur les derniers jours de la période. Beaucoup estiment que les données récentes reflètent mieux l'orientation de la sécurité, tandis que d'autres estiment que donner quelques jours plus de poids que d'autres, fausse de façon incorrecte la tendance. Les investisseurs qui utilisent différentes méthodes pour calculer des moyennes peuvent tirer des tendances complètement différentes. (En savoir plus sur les moyennes mobiles simples et exponentielles.) 5. Beaucoup d'investisseurs soutiennent que l'analyse technique est une façon dénuée de sens de prédire le comportement du marché. Ils disent que le marché n'a pas de mémoire et que le passé n'est pas un indicateur de l'avenir. De plus, il y a des recherches substantielles pour étayer cela. Par exemple, Roy Nersesian a mené une étude avec cinq stratégies différentes en utilisant des moyennes mobiles. Le taux de réussite de chaque stratégie variait entre 37 et 66. Cette recherche suggère que les moyennes mobiles ne donnent des résultats que sur la moitié du temps, ce qui pourrait faire de leur utilisation une proposition risquée pour un timing efficace du marché boursier. 6. Les titres présentent souvent un comportement cyclique. Cela vaut également pour les entreprises de services publics, qui ont une demande constante pour leur produit d'une année à l'autre, mais connaissent de fortes variations saisonnières. Bien que les moyennes mobiles peuvent aider à lisser ces tendances, ils peuvent également cacher le fait que la sécurité est tendue dans un modèle oscillatoire. (Pour en savoir plus, consultez Gardez un œil sur l'élan.) 7. L'objectif de toute tendance est de prédire où le prix d'un titre sera à l'avenir. Si un titre n'est pas tendance dans l'une ou l'autre direction, il ne fournit pas une occasion de tirer profit de l'achat ou de la vente à découvert. La seule façon dont un investisseur peut être en mesure de réaliser des bénéfices serait de mettre en œuvre une stratégie sophistiquée basée sur les options qui repose sur le prix restant stable. Le fond Les moyennes mobiles ont été jugées un outil analytique précieux par beaucoup, mais pour n'importe quel outil pour être efficace vous devez d'abord comprendre sa fonction, quand l'employer et quand ne pas l'employer. Les risques décrits ici indiquent que les moyennes mobiles n'ont peut-être pas été un outil efficace, par exemple lorsqu'ils sont utilisés avec des titres volatils, et comment ils peuvent négliger certaines informations statistiques importantes, comme les modèles cycliques. On peut également se demander comment les moyennes mobiles sont efficaces pour indiquer avec exactitude les tendances des prix. Compte tenu des inconvénients, les moyennes mobiles peuvent être un outil mieux utilisé en conjonction avec d'autres. En fin de compte, l'expérience personnelle sera l'indicateur ultime de l'efficacité qu'ils sont vraiment pour votre portefeuille. (Pour en savoir plus, voir Les moyennes mobiles adaptables conduisent à de meilleurs résultats) Moyennes mobiles pondérées: les bases Au fil des ans, les techniciens ont constaté deux problèmes avec la moyenne mobile simple. Le premier problème réside dans le laps de temps de la moyenne mobile (MA). La plupart des analystes techniques croient que l'action prix. Le prix d'ouverture ou de clôture de l'action, ne suffit pas à dépendre de prédire correctement les signaux d'achat ou de vente de l'action de crossover MA. Pour résoudre ce problème, les analystes attribuent désormais plus de poids aux données de prix les plus récentes en utilisant la moyenne mobile exponentiellement lissée (EMA). Un exemple Par exemple, en utilisant un MA de 10 jours, un analyste prendrait le cours de clôture du 10e jour et multiplier ce nombre par 10, le neuvième jour par neuf, le huitième Jour par huit et ainsi de suite à la première de la MA. Une fois que le total a été déterminé, l'analyste divise ensuite le nombre par l'addition des multiplicateurs. Si vous ajoutez les multiplicateurs de l'exemple MA de 10 jours, le nombre est 55. Cet indicateur est connu comme la moyenne mobile pondérée linéairement. De nombreux techniciens sont convaincus de la moyenne mobile exponentiellement lissée (EMA). Cet indicateur a été expliqué de tant de manières différentes qu'il confond les étudiants et les investisseurs. Peut-être la meilleure explication vient de John J. Murphys Analyse technique des marchés financiers, (publié par le New York Institute of Finance, 1999): La moyenne mobile exponentiellement lissée répond aux deux problèmes associés à la moyenne mobile simple. Tout d'abord, la moyenne exponentiellement lissée attribue un poids plus important aux données les plus récentes. Par conséquent, il s'agit d'une moyenne mobile pondérée. Mais si elle attribue moins d'importance aux données sur les prix passés, elle inclut dans son calcul toutes les données de la vie de l'instrument. En outre, l'utilisateur peut ajuster la pondération pour donner plus ou moins de poids au prix des jours les plus récents, qui est ajouté à un pourcentage de la valeur des jours précédents. La somme des deux valeurs en pourcentage s'élève à 100. Par exemple, le prix des derniers jours pourrait être attribué à un poids de 10 (0,10), qui est ajouté au poids des jours précédents de 90 (0,90). Cela donne le dernier jour 10 de la pondération totale. Ce serait l'équivalent d'une moyenne de 20 jours, en donnant le prix des derniers jours une valeur plus petite de 5 (0,05). Figure 1: Moyenne mobile lissée exponentiellement Le graphique ci-dessus montre l'indice composé Nasdaq de la première semaine d'août 2000 au 1er juin 2001. Comme vous pouvez le voir clairement, l'EMA qui utilise les données de clôture sur un Neuf jours, a des signaux de vente définis le 8 septembre (marqué par une flèche vers le bas noire). C'était le jour où l'indice est passé au-dessous du niveau de 4.000. La deuxième flèche noire montre une autre jambe que les techniciens attendaient. Le Nasdaq ne pouvait pas générer assez de volume et d'intérêt des investisseurs de détail pour briser la marque de 3000. Il a ensuite plongé vers le bas de nouveau à fond à 1619,58 le 4 avril. La tendance haussière du 12 avril est marquée par une flèche. Ici, l'indice a fermé à 1,961.46, et les techniciens ont commencé à voir les gestionnaires de fonds institutionnels commencent à ramasser quelques bonnes affaires comme Cisco, Microsoft et certaines des questions liées à l'énergie. (Lisez nos articles connexes: Enveloppes moyennes mobiles: raffinage d'un outil de trading populaire et rebond de moyenne mobile.)
No comments:
Post a Comment